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The turbulent boundary layer and wake of an aligned flat plate
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Abstract. A theoretical study of the turbulent boundary layer and symmetric wake of an aligned flat plate is
described. A specific turbulence model is taken throughout, namely the Cebeci-Smith one, although at the high
Reynolds numbers of interest the wake results are found subsequently to be influenced hardly at all by the precise
details of the model, so that there is a ready generalization. The two-tiered wake implied by the analysis is rather
different from the two-tiered boundary layer. The inner tier of the wake is thicker than the boundary layer's inner
tier and, associated with this, the "logarithmic" zone present in the boundary layer upstream is absent in the wake,
being replaced by a "cuspidal" zone just outside the inner-wake tier due to the reduction in shear stresses. Local
interactive regions near the trailing edge show how the erosion of the logarithmic behaviour takes place relatively
fast, being virtually complete on entry into the full wake. The agreement between the theory, experiments and
previous computations for the boundary layer and full wake is found to be good quantitatively as well as
qualitatively, encouraging the use of the present approach in other contexts such as turbulent separation.

1. Introduction

The turbulent flow past a flat plate aligned with a uniform free stream poses a fundamental
problem theoretically, with particular concern over its properties at high Reynolds numbers.
It is in addition of more practical interest since it can provide guidance for the prediction of
the turbulent flow past thin airfoils and for increased understanding of the main flow
features, including the change in character near the trailing edge and in the wake and,
possibly, the onse~ of turbulent separation on thicker airfoils. Experimental studies of the
turbulent flat-plate flow have been made by Chevray and Kovasznay [1] and Andreopoulos
and Bradshaw [2] at Reynolds numbers of approximately 6.5 x 105 and 6.7 x 106, respect-
ively, based on the plate length. Both studies present detailed measurements of the velocity
profiles in the wake and the displacement and other thickness quantities there, with the
second, more exhaustive, study being concentrated relatively nearer the trailing edge and
giving also measurements of the velocity fluctuations and intensity distributions in the near
wake. Comparisons with the above experiments are made later in this report, although
alternative sets of experiments are presented by Pot [3] and Ramaprian, Patel and Sastry [4]
and in references quoted in the above papers.

The largeness of the Reynolds number in practice is reflected in the corresponding
computational and/or theoretical investigations. Notably, Mellor [5], Bush and Fendell [6]
and Fendell [7] developed an asymptotic approach for the attached turbulent boundary-layer
description assuming a rather general form for the turbulence closure consistent with a
two-tiered boundary layer. This has been followed through, and extended significantly, by
Melnik and his co-workers [8-11] for the examination of trailing-edge motions, interactive
effects (see also Sykes [12]) and transonic conditions, while proposals for the structure of
turbulent separation have been put forward by Sychev and Sychev [13] and Sychev [14] as
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discussed later in this section. The flow near a trailing edge has also been considered by Alber
[15] and more recently by Bogucz and Walker [16], the latter work being done simultaneously
with ours and kindly brought to our attention by Prof. J.D.A. Walker. Comments on the
small overlap of these papers and the present study are made in our Appendix B below. On
the computational side the flat-plate flow, and others, have been addressed numerically by
Cebeci, Thiele, Williams and Stewartson [17] using a set of classical boundary-layer equations
and the Cebeci-Smith [18] turbulence model, modified for the wake part of the calculation.
Other related computations of interest are by Inouye, Marvin and Sheaffer [19], Cebeci,
Stewartson and Whitelaw [20], Bradshaw [21] and Hoffman and Ny [22], for instance, with
further studies being listed in the references above.

As far as we know, little or no attention has been given previously to making comparisons
between experiments, computations and asymptotic theory as regards the whole turbulent
boundary-layer and wake motion for the flat-plate geometry. Mostly, local comparisons
close to the trailing edge have been made instead, with Bogucz and Walker [16] in particular
summarizing the findings there and providing some interesting remarks on the experimental
accuracy or lack of it. The possibility of making fuller, or rather more global, comparisons
in the boundary layer and wake motivates the present theoretical study, on asymptotic
features, which supposes two-dimensional, symmetric, steady turbulent flow of an incom-
pressible fluid and, perhaps of more significance, takes a specific turbulence model from the
outset, namely the Cebeci-Smith algebraic eddy-viscosity one.

There are two extra reasons for the current investigation. The first concerns the issue of
whether the specific turbulence model chosen can adequately account for the wake motion
or not, and, if so, how accurately, given that the model was proposed originally for wall
boundary-layer flows. Doubts have been expressed over the existence of an acceptable wake
solution when a model of the Cebeci-Smith kind is used, and especially over the formation
of an apparent "cusp" in the inner velocity profile as opposed to the wake symmetry
condition. Part of our aim therefore is to discover if acceptable solutions are indeed possible
with our procedure and, then, to ask if they are physically sensible and accurate. The second
reason is that an increased understanding of wake-flow and trailing-edge effects may well
lead on to an understanding of the process of turbulent separation, a process whose structure
is so far unclear. The trailing edge forces an abrupt change in boundary conditions and hence
in the flow structure, due to the sudden removal of wall shear, and it is found here (see the
next paragraph) that the "logarithmic" zone of the turbulent oncoming boundary layer is
quickly wiped out in the wake, to be replaced by a new "cuspidal" zone. A similar change
in character is believed to occur during turbulent separation, e.g., see the experiments of
Trupp, Azad and Kassab [23]. It may be of course that, as some researchers have argued,
a severe modification of the turbulence-closure model is inherent during the separation
process, but that need not necessarily be so since the analogous present problem involving
trailing-edge flow produces marked changes in the flow response even though the turbulence-
closure model is unchanged throughout. Turbulent separation is the subject of subsequent
work by the present authors [24, 25], work which differs from both the theoretical approaches
of Sychev and Sychev [13] and Sychev [14] in the treatment of the outer tier of the turbulent
boundary layer prior to separation. We note, again in passing, that the proposed analogy
between trailing-edge flow properties and the separation phenomenon works perfectly in
laminar flow, as described by Messiter [26] and Stewartson [27] and reviewed recently by
Messiter [28] and Smith [29], and indeed there must surely be a strong connection between
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the two due to the natural emergence of separation in the trailing-edge regions as a trailing
edge is made blunter or at increased angles of attack.

The report is laid out as follows. Section 2 presents the governing equations in a suitably
normalized dimensionless form, for the turbulent boundary layer and wake, based on the
Cebeci-Smith model. The equations are taken in a boundary-layer version for convenience
although the Appendix A shows that the same results emerge from the Navier-Stokes
version, to our order of working. Sections 3, 4 then address the boundary-layer and wake
features, in turn, when the Reynolds number Re = u l, /v is large, where uo, is the uniform
freestream speed, 1, is the plate length and v is the kinematic viscosity of the fluid. The
turbulent wake turns out to have a structure rather different from that of the boundary layer.
The logarithmic behaviour in the latter is destroyed in the wake because of the reduced
maximum stresses acting there and instead a thickened inner tier is induced, with width of
the order Re-2/3(ln Re)'/31o , giving rise to a "cusp" in the velocity profile just outside this
inner tier. The symmetry condition is satisfied, even so, at the wake centre-line which is
buried inside that inner tier; thus previous workers' objections to the formation of a cusp are
shown to be unfounded. The resulting analytical and numerical predictions for the boundary
layer and the wake are compared with experimental findings and fully computational results
in Section 5. The agreement in terms of the wake centre-line velocity and the boundary-layer
and wake displacement thicknesses is found to be good quantitatively as well as qualitatively.
Further discussion is presented in Section 6, including some extra comparisons and conclusions
of a more qualitative or structural nature and the generalization to other turbulence models.
On this last matter, the present approach is in fact more general than might have been
anticipated, since the new wake structure found requires relatively little detailed knowledge
of the turbulence model.

The Appendices A-C deal with certain additional aspects arising, Appendix B specifically
being concerned with the interactive flow structure surrounding the trailing edge where the
erosion of the logarithmic layer takes places quickly and is virtually complete on entry into
the full wake of Section 4. Finally here, we note that the velocity components are written
UD, VD in the XD, yD Cartesian directions respectively, where the leading and trailing edges
are at (0, 0), (lx, 0) respectively, the pressure and the fluid density are PD, 0 in turn, and the
subscript D where used denotes a dimensional quantity.

2. The governing equations

Two main options for the governing equations of the turbulent boundary layer and wake are
addressed in this report. The one we consider mostly is based on the boundary-layer or
so-called thin shear layer (TSL) equations, e.g. Cebeci et al. [17],

-UD+ = 0, (2.1)
aXo OyD

auD aUD a 'UD 2UD
UD a + Vo a a LBD V 2 (2.2)
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in dimensional terms. Here the Cebeci-Smith turbulence model is assumed, in which

aD for YD < YDI (2.3a)

(2.3b)

the constants have the values a, = 0.16, a2 = 26, a3 = 0.0168, while

6* ((xD) f.f( _)dYD (2.3c)

is the local displacement thickness, and at the unknown junction YD = YDI (x) between
(2.3a,b) continuity of B, UD, OuDlayD, i.e., of the eddy viscosity, the velocity and the shear,
must be ensured. Again, the unknown friction velocity U,D is related to the unknown shear
stress on the plate:

UD = v x 1X / (2.3d)

The appropriate boundary conditions are

UD = VD = 0 at YD = 0, (2.4a)

UD - u., as YD - o, (2.4b)

for no slip on the plate and to match with the uniform external stream u®, respectively, and
the starting condition at XD = 0 is essentially that 6' is zero there. The second option is to
address the full Navier-Stokes equations; this option is discussed in Appendix A and is
found to yield virtually the same results as those below based on the TSL equations
(2.1)-(2.4b), the differences in fact being negligible to our order of working.

Before proceeding with the analysis of the TSL equations we express them in a suitably
normalized nondimensional form by setting

(UD, vD, XD, YD) = (UoU, aluv, Ix, aony), R = ul,a2/v (2.5)

where R = a Re is a normalized Reynolds number. Then the TSL equations become

Au av
-+- = 0, (2.6a)

au au 0 B U R_ (2.6b) 
Ux + V- y B- R- (2.6b)Ax ay ay y] ay2

BD =
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with B defined by

B {1 - exp (-a 4Ruy)}2 D for y < y (2.6c)B =JIy IeTp(-4 Ruy),l [
ta56 for y > y, (2.6d)

and

6(x) = fo(1 - u)dy, u = [R- (x, 0) (2:6e)

u = v = 0 at y = 0 (0 < x < 1), (2.6f)

u- 1 as y -+ o, (2.6g)

subject also to continuity of B, u, u/y at y = y,(x). The new constants here are a4 =

al'a 1'/2(=0.09615...) and a5 = a3a'(=0.105), and we note for later reference that
u = al 2UDIU, = 6*/(loa ,) relate the normalised friction velocity and displacement
thickness to their dimensional counterparts introduced earlier. The system (2.6a-g) describing
the turbulent boundary layer 0 < x < 1 and the turbulent wake x > 1 (with symmetry at
y = 0 replacing (2.6f)) is analysed below for large Reynolds numbers R, with an alternative
treatment being summarised in Appendix A.

3. The boundary layer

The classical boundary layer for 0 < x < 1 has the structure indicated by Mellor [5] and
Bush and Fendell [6], at large Reynolds numbers. It takes on a two-tiered form I, II (see
Fig. 1 (a)), in which the outer tier I has thickness y of order e and involves only a small deficit
of order E in the velocity u from its freestream value of unity, whereas in the inner tier II

Small-deficit outer layers
l) (b)

OW() I I l O(e)

v . ____ __ __ _ _ _ .<...................... O(RI2I3

Turbulent-laminar stress sublayers

Fig. . The general flow structure for (a) the turbulent boundary layer and (b) the wake at high Reynolds numbers

R, showing the main regions I-III of Sections 3, 4. In (a), layers , 1 merge via a logarithmic velocity deficit, while
in (b) layers I, III merge via a cuspidal velocity deficit. The extra regions close to the trailing edge are presented
in Fig. 5 and Appendix B.
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of thickness O(R-e- '), very close to the plate, u is reduced to O(e). The merging between
the two tiers is achieved by means of logarithmic behaviour in the velocity deficit in I and
the velocity in II. Here the parameter

e _ (In R)-' (3.1)

is small, since R > 1, and u, is also of order e.
In the small-deficit outer layer I, where the major balance of forces is between inertia and

turbulent shear stress, the velocity field expands as

u = 1 + u + e2(ln )u2L + e2 u2 + ... , (3.2a)

v = 2v + 3(ln)v2L + 3 v2 + ... , (3.2b)

with y = ey and y is 0(1). This implies that the displacement thickness 6 in (2.6e) now has
the form

= 261 + 3(ln e)2L + 352 + .... (3.2c)

Strictly the unknown junction position y = y,(x) should also be expanded asymptotically
but the setting y, = ey, is sufficient for present purposes, e.g. for determining the displace-
ment thickness to order 3. From substitution into the TSL equations (2.6) the successive
governing equations obtained are as follows. First, u,, v, are controlled by the inertia-vs.-
turbulent-stress equations

+- = 0, (3.3a)Ax a

u & [~2 ( ]aul2 for < 91,
ax [2 (@a)22 f y y (3.3b)

for > l,

since here B e2 2 I au1 /la I or e2a56, to leading order and we expect the shear au/ly to be
positive throughout, an assumption that can be justified a posteriori. Again,

o, I= - f,, u dy. (3.3c)

The boundary conditions relevant at this stage are

u, O0 as -- oo, u, - In + 0(1) as - 0+, (3.3d)

the former coming from the freestream condition (2.6g) and the latter from the matching
discussed a little later: see (3.1 la, b) below. The solution of (3.3a-d) is required to determine
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in particular the unknown velocity-deficit function k, (x), where

u, - Iny + k,(x) + O(Y) as -O+

from an extension of (3.3d). Second, for u2L, V2L we have the governing equations

Ou2L av2L 

ax ay

(3.4)

(3.5a)

for < ,,
, 2 a r Y a2I a 2LaOu2 a= a ay )

a5 (51 0 ZL + 2L 2)

(3.5b)

for > ,,

from (2.6a-d), along with

6 2L = - fOu 2L d,

U2L 0 as -- oo, U2L -2 In y as --+ 0+

- again see (3.11) below. Third, the controlling equations for u2, v2 are

0u2 0v2OU + V2 = 0,ax ay

0u2 au1 0u
O- + u, a + v u, =axX ax ayt

2- 2 a0ul OU2

a5 (, U2 + 52 a
1 W a

for y < ,,

(3.6b)

for 5 > y,,

where

62 = - o 2 d9

and

u2 0 as - oo, u2 - (k, - k2) n as -,0O+,

(3.6c)

(3.6d)

again from the freestream condition and from the matching in (3.11) below. The starting
conditions at the leading edge x = 0 are 6,(0) = 62L(O) = 2(0) = 0. Also, the extra
unknown function k 2(x) appearing in (3.6d) is to be determined by the behaviour in the
viscous sublayer II below, and the junction position y , e 1 is assumed to be typically of
order e.

(3.5c)

(3.5d)

(3.6a)

21
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The inner sublayer II, by contrast, involves a balance between the turbulent and laminar
viscous stresses alone. In II we have y = R-'E-'1, with Y now of 0(1), and

u = i + O(82 In ). (3.7)

Thus the main governing equation here is, from (2.6b),

0 = [y2{1 - exp (-a 6 )} 2 (O) ] + a2i (3.8a)

subject to the constraints

fi - In9 as Y -co, i = 0 at = 0, (3.8b,c)

to merge with the solution in layer I and to satisfy (2.6f), in turn. In (3.8a) to leading order
a6 a4u,TE-' is 0(1). A first integral of (3.8a) gives

2{l - exp (- a 6)} 2 i + a 1, (3.9a)

however, in view of the requirement that aii/g - -1 as Y - oo, from (3.8b), and hence
afi/ta = 1 at the plate = 0, so that (2.6e) gives u, = to leading order. Therefore a6 = a4.
Next, (3.9a) can be solved for the shear stress,

Oai -1 + [1 + 42{1 - exp (-a4 )})2 ] 1/ 2

09 2 2 { 1 - exp (- a4)}2 '

after which the sublayer velocity is fixed by

= a d, (3.9c)

from (3.8c). Hence we obtain the asymptote

i - In + k 2(x) as - oo, (3.9d)

say, where the function k2(x) is given by

k2(x) = lim {J( [1 + 4q2{1 - exp (-a 4 q)} 2 ]-12 - 1)dq -n (3.9e)
k()= r U 2q2{1 - exp ( aq)} 2

and in fact is constant. It is noted here also that the friction velocity u, has the form

U = E + 2 (ln E)U,2L + 2 u,2 + . . . (3.10)

for later reference.
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The merging between the two tiers I, II anticipated above perhaps needs a little clarification
now. If the more general forms

u, h, In y + k, 2L h2L In y + 0(1), u2 - h2 Iny + 0(1) (3.11a)

hold in tier I, as y -+ 0+, then the velocity implied by tier I becomes

u = 1 + e[h,(-ln R - 2 In e + In) + k] + e2 In [h2L(-ln R) + O(ln )]

+ 2[h2 (-ln R) + O(ln E)] (4.1 b)

as the inner tier II is entered, i.e. as Y -* R-'-2y. To match with tier II's velocity in (3.7),
therefore, given e in (3.1), the contributions of orders 1, e In e and e in (3.1 lb) demand, in
turn, the relations h, = 1, h2L = -2h,, -h 2 + k = k2 and that i - h In + k2 as

- o. Hence the constraints involving logarithms in (3.3d), (3.4), (3.5d), (3.6d), (3.8b),
(3.9d) are all verified.

The main results we require from the working are the unknown displacement contributions
in (3.2c). The first one, 6, (x), can be deduced from integration of (3.3b) with respect to y,
from zero to infinity, yielding

d6, - lim au 2 

dx -O+lim 1 u = -

in view of (3.3c,d). Hence, as 6,(0) = 0,

1, = x. (3.12)

The second contribution, 62L(x), likewise follows from direct integration of (3.5b), which
gives

d2 - li [22 aul au2 Ll

dx = o+ ay ay

on use of (3.3d), (3.5d), so that

62L = -4x. (3.13)

The third contribution 62(x) is rather trickier to evaluate. For integration of (3.6b) across
the layer now gives

d62 d u au
d- +x fo dy = - lim 2y = -2(k - k2), (3.14)

from (3.3a,d) with (3.6d), and so the detailed properties of ul (x, Y) are needed here. Fortu-
nately the solution for u, is of the similarity type, specifically

ul = f () with ? = Y/x

23
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where, from (3.3b,d), f, satisfies

(,/2f' 2), (for ? < /1)
- fi' = (3.15b)

ajf'" (for t > l)

since A = x, and the junction y = xt1, say, subject to

fi(o) = 0, f, In q/ + O(1) as ? 0+. (3.15c)

The solution is

ln P + b, - /2 for 0 < < 

A = (3.16a)
exp ((tl - q2)/2a 5)d/ for ?I > ,

where continuity off,, f,' and stress, i.e, 2fl' = a5, at = ?,, imposes the three conditions

In ll + b, - r1,/2 = -c, f exp ((Il2 - r/2)/2as)dr,

lI - = C,

(3.16b)
1 - 12/2 = a,

necessary to fix the three unknown constants ,, b,, c. We find from (3.16b) that

q = 1.889, b, = 0.307, c, = 0.0294 (3.16c)

and hence the velocity function k, is determined as

k,(x) = -In x + b,. (3.16d)

Returning to (3.14), therefore, and integrating, we obtain the displacement correction 62 in
the form

2(x) = x ({ fl2dt - 2k2 + 2 + 2b,}-2xlnx, (3.17)

since k2 is constant. Furthermore, numerical evaluation of the integral appearing in (3.17)
gives its value as 1.68, while computation of (3.9e) yields the value k2 = 3.01, using
trapezoidal rules coupled with grid-size extrapolation.

Combining these results, we derive the prediction

6(x) = 2x - 4e3(ln e)x + 3 [(- 1.74)x - 2x In x] (3.18)

for the normalized displacement thickness of the boundary layer, for 0 < x < 1, when the
Reynolds number is large. This is compared with experimental and fully numerical findings
in Section 5.
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4. The wake

Our procedure for the turbulent symmetric wake x > 1 is to continue with the TSL
equations of Section 2 unchanged, i.e., to keep the Cebeci-Smith model, although with
symmetry conditions along the centre line of course, and then see if a sensible structure,
governing equations and predictions emerge for the entire wake flow.

Thus (2.6a-e,g) continue to hold in the wake but with (2.6f) replaced by

= v = 0 at y = 0(forx > 1). (4.1)
ay

Then for large Reynolds numbers the approach in (3.1)-(3.2c) still applies exactly for the
outer bulk I of the wake, of thickness O(E), wherein y is O(1) and the junction y, x y is
situated. So at leading order the governing equations for u,, v, are again (3.3a,b), subject
again to (3.3c) and to the first constraint in (3.3d), that u, vanishes as y - oo. The second
constraint in (3.3d) concerning logarithmic behaviour no longer applies now, however, for
the following reason. It would require an inner shear-stress layer (II) just as in (3.7) above,
leading then to (3.8a,b) but with iilay/ = 0 at y = 0 instead of (3.8c), because of the
symmetry condition (4.1). Integration of (3.8a) with respect to y and application of (3.8b)
would therefore reproduce the result (3.9a) and this would contradict the centre-line constraint
/iila/ = 0 at y = 0. The resolution is that the logarithmic term in u, as - 0 + must be
absent in the wake, i.e.

a, = o(lny) as y 0+, (4.2a)

and it is found (see below and Fig. (b)) that the thin inner layer II is no longer present, being
replaced by a new thicker layer III. The only way for (4.2a) to be achieved, in fact, is if the
small-Y behaviour of u, has the form

ul = q1(x) + 2(q'(x)) 12 Y'/2 + O(Y) as y - 0+, (4.2b)

from substitution into the controlling equation (3.3b). This supposes that the centre-line
correction velocity q (x) increases monotonically with x(q, > 0), which is found to be true
subsequently: see Fig. 2 below. It supposes also that the yl/2 response or "cusp" appearing
in the velocity profile in (4.2b), and to which reference was made in the introduction, can be
eradicated in an inner sublayer, III say, nearer the centre line in order to avoid contradicting
the symmetry condition (4.1). The required sublayer III is considered next.

The size of the new inner layer III stems from an order-of-magnitude estimate. The shear
au/ay - -' 12[=' 12y-'12 ] for small , from (4.2b) coupled with (3.2a), and so a new
turbulent-laminar stress balance comes into force when y - R - 'e 12y-' 12 , from balancing
the term y2(au/ay)2 against the term R- '(u/ay) in (2.6b), i.e., when y - R- 2 3e- 1 /3. At that
stage the inertia term also balances the shear-stress contributions, as indeed (4.2b) implies
since the response (4.2b) relies on inertial and turbulent-stress effects remaining comparable.
Hence the sublayer III has y = R-21 3 - 1/3g say, with f of O(1) typically, v is O(R-213/ 213) and

u = 1 + q,(x){+ . .. + R- 3 1 13/3t(X, ) + . . .

25
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where the intervening terms { + . . are independent of 9: see e.g., (4.6)ff below. From
(2.6b) the main governing equation here is

q (x) = [ ( A ] + (44a)

expressing an interplay of inertial, turbulent and laminar stresses as anticipated. We observe
also that this inner-wake layer III is much thicker [O(R-2/3 - 1/3)] than the classical O(R- e- ')
inner-wall zone II of the boundary layer on the plate, and moreover it does not depend on
the precise details of the turbulence model in (2.6c), only on the outer part y2 1 au/ly l in B
there, unlike the inner-wall zone II of (3.8a)-(3.9e). The constraints on (4.4a) are

a 2(q )1/29112 as - , - = 0 at 9 = 0, (4.4b,c)

due to (4.2b), (4.1) respectively. Consequently the 9-integral of (4.4a), subject to (4.4c), gives

Ai)} + = Aq , (4.4d)

so that

{ Au [(I + 493q) 2 /2 = d[(1 + 4)(x, 0). (4.4e,f)

The condition (4.4b) is met, therefore, since i (q )l/2 9-l/2 for large 9 from (4.4e), and so
the sublayer III's solution acts as required to smooth out the cusp in the velocity-profile
behaviour (4.2b) and to ensure the full symmetry condition along the centre line. No distinct
sublayer thinner than III appears necessary, by the way.

Our primary task, then, to determine the turbulent wake properties, is to solve the
outer-layer problem (3.3b) for u, in x > 1 subject to (3.3c), u (x, oo) = 0 and (4.2b), and
with the starting form

u,(1, ) = f(Y) for 0 < < oo (4.5)

where the trailing-edge profilef1 is specified in Section 3; see (3.16a-c). Before describing the
solution we remark that the centre-line velocity is predicted here to be

UCL u(x, O) = 1 + esq(x) + O(e2 In E) (4.6)

from (4.2b), where q, (x) is to be found, and in principle further terms in (4.6) can also be
found from the solution of the successive problems for u2L, u2 and so on, including the small
contribution from u(x, 0) in (4.3). For example, U2L, u2 satisfy (3.5b, c), (3.6b, c) again but
the inner constraints for the wake x > 1 are that u2L, u2 remain finite at y = 0, as opposed
to (3.5d) (3.6d). Thus, as with (4.2b), the logarithmic law and the so-called logarithmic layer,
between tiers I, II on the plate, are wiped out in the wake motion. Further, the displacement
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contributions 61, 62L, 62 can be worked out by integrating the momentum equations for u,2L,2
across the wake and due to the disappearance of the logarithmic responses just mentioned,
we obtain the simple results db,/dx = d62L/dx = 0, d62/dx = dJ/dx, in contrast with
(3.12)-(3.14). Here J is the integral of u2 across the half-wake. Since 612L,2 are continuous at
the trailing edge, therefore

61 = 1, 62L = -4, 62 = J(x) + {2(1) - J(1)} (4.7a)

for x > 1, where

J(x)_ o u dy; (4.7b)

the displacement thickness of the wake then follows from (3.2c). Hence the outer-layer
solution for u, (x, ), addressed next in (a)-(c), is needed mainly for the evaluation of the
contributions q, (x) in the centre-line velocity and J(x) in the displacement thickness.

(a) The near-wake, just beyond the trailing edge at x = 1, provides some useful information
first. Across most of the outer layer I the velocity u, expands regularly, for example

ul = fi(.) + (x- 1)(y 2fi 2)' + . . . as x - 1+ (4.8)

below the junction at y = ,, from substitution of (4.5) into (3.3b), and similarly above the
junction. This holds except for small y where the behaviour f, (Y) - In y (from (3.16a))
violates the wake condition (4.2b), thus calling for a relatively thin inner zone. The inner
zone turns out to have thickness y of order (x - 1) to preserve a momentum balance and
so

u, = In(x- 1) + F,() + ... as x - 1+ (4.9a)

with Y = /(x - 1) of order unity. Substitution into (3.3b) leaves the equation

1 - 5F = ( 2 F(2 )' (4.9b)

for F (), with the conditions F, - In 5 + 0(1) as -- , to match with (4.8) outside, and
F (0) to be finite, to comply with (4.2b). Setting F' = I(D) converts (4.9b) to the form
1 - D = 21', so that, on integration,

= -2{(1 + In (1 - D) (4.9c)

fixes the solution implicitly. In (4.9c) the condition cD(O) = 0 has been used, corresponding
to the finiteness requirement on F (0). The solution is presented in Fig. 2, and we note that
in the upper extremes of this layer (D 1 - e-' exp (- /2)(5 - o), giving F - -1 as
necessary, while as the centre line is approached ( - 0+)ID 1/2, so that F, - F,(0) +
2 1/2 there, which complies with the wake condition (4.2b). Indeed, this allows the centre-line
velocity contribution q, (x) to be determined,

q,(x) - In (x - 1) + e for x -* 1+,

27
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Fig. 2. Properties for the wake flow of Section 4: (a) the near-wake velocity deficit in layer I (sketch); (b) the
function D() appearing in the near-wake solution; (c) centre-line velocity u, (x, 0) versus x; (d) the displacement
contribution J versus x. Asymptotes are as shown. Further computational details are in Appendix C.

where the constant e = F (0) is given by

e, = lim In - -'o(de} + b, = -1.137~--* I o 
(4. lOb)

since F, = -'1 d + e must tend to InC + b,1 for large 6, with b, given in (3.16a,c). We
obtained the numerical value in (4.10b) by manipulating the formula for e - b, into the
form

[o In {2(es - 1 + s)/s}e- ds - 2y

and evaluating the integral here by trapezoidal integration and grid-extrapolation; y is
Euler's constant 0.577215 ....



The turbulent boundary layer and wake of an alignedflat plate

2 3

- x

q,(x)

T

_ Far-wake asymptote

1.1
X

. ---- Asymptote
X Calculations

/

I

I

(c)

(d)

Far-wake asymptote

Near-wake asymptote

t
J(x)=6(x) + conretnt

I. o

Fig. 2. Continued

29

-1-

-2-

-3-

Near-wake asymptote

/

CLOSE-UPVIEW

-4.

/

-6 -

-7 -

0

v n 1

q,xlT-s 

I



30 A. Neish and F.T. Smith

The local analysis above also allows the displacement contribution 62(x) in (4.7) to be
evaluated just beyond the trailing edge. It is found that

62( x) ~ 62(1) + 2(x - 1) n (x - 1) + O(x - 1)(x - 1+), (4.11)

with the major contribution to the slope 62 (x) coming from the inner zone where (4.9a) holds.
The scaled displacement slope is therefore large and negative for small (x - 1), within the
present scales.

The marked effects at the start of the wake, regarding the increasingly large negative
velocity correction ql in (4.10 a), the increasingly large negative displacement slope 6' due to
(4.11), and the splitting of the small-deficit layer I into two parts () 1 , ) x - 1), for
small (x - 1), lead on to the examination of localized trailing-edge regions in Appendix B.
The whole response in the near-wake seems physically sensible, we observe, including all the
three features just described, and moreover it is found to be in broad agreement with
computations and experimental measurements of wake flows, as discussed later on. Finally
here, it is worth re-emphasizing the way the wake motion obliterates the logarithmic
behaviour from the velocity profiles. Near the trailing edge that is achieved via the inner zone
of(4.9a) and its solution (4.9c), which takes the incoming logarithmic form due tofl for large
5 and converts it to the "cusp" form holding nearer the centre line for small 5 (and thence
into the sublayer III described previously). On the plate upstream, by contrast, the solution
of (4.9b) is simply D , giving F, = In 5 + b and producing the logarithmic layer closer
to the plate surface.

(b) The far-wake, for large positive x, develops the similarity form

ut ~ x- 1 g() + . .. with 0 - 3x- , (4.12)

as the flow there returns to the uniform stream, u -- 1. From (3.3b) with (4.7a), g, satisfies
the nonlinear/linear differential equations

(02g,2),, 
0 <01

-½g- 1 
^ , (4.13a)

0 >01

while the boundary conditions are

g,(0) = finite, g(co) = 0 (4.13b)

and at the unknown junction (0 = i)g 1, g' are to be continuous, with 2g, - a as

~ 0-- Also, the constant displacement 6, in (4.7a) requires that

(4.13c)-fo g (q ) d = 1. (4.13c)

The equations in (4.13a) yield the solution

-1(01/ 2
- 0')2 for < 1'

g,() = (4.14a)
2 exp (-_ 2/4a 5) for > il,
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and then the constraints between (4.13b,c) provide three independent equations fixing the
three unknown constants ~,, a,, a2. In particular we find a, = 1.861, which from (4.14a),
(4.12), (4.2b) leads to the downstream asymptote

q,(x) -1.73x - '/2 as x - oo (4.14b)

for the centre-line velocity correction. The far-downstream behaviour of the displacement
contribution 62(x) in (4.7a,b) can also be worked out now, from the integral of g across the
half-wake, producing

62(x) - {62(1) - J(1)} + 0.693x - '/2 as x -- co. (4.14c)

Like the near-wake results in sub-section (a) above, the present results for the far-wake
provide useful checks on the calculations discussed subsequently in (c) as well as being
physically sensible in themselves and turning out to be in agreement with the experimental
wake properties (see Section 5).

(c) The complete wake properties require a numerical treatment of the governing equation
(3.3b) for x > 1, subject to (4.2b), (4.5), (4.7a) (replacing (3.3c)) and u, (x, co) = 0. This was
done with an explicit predictor-corrector finite-difference scheme, of nominally second-order
accuracy in x, Y, starting with the profile (4.5) at x = 1. The computational scheme is
described in detail in Appendix C, together with the checks made on its accuracy, while the
results are summarized in Fig. 2.

The principal results are for the centre-line correction velocity q, and the displacement
term 62, versus x. For small (x - 1) the computations agree well with the near-wake analysis
in (a) above and appear to capture the predicted irregular response there adequately. As x
then increases the velocity q, (x) continues to increase, while the displacement 62(x) decreases
monotonically, throughout the wake, and for large x the downstream responses predicted
in (b) above are approached, as expected.

The two conclusions we draw from this section are: first, the original Cebeci-Smith model
can indeed be continued into and throughout the turbulent wake, in the sense that a complete
wake solution does emerge; and, second, the wake solution found is physically sensible,
allowing the flow for example to accelerate along the entire wake and approach the free
stream far downstream. Next, therefore, we compare the wake predictions above and those
for the boundary layer with experimental and fully computational findings.

5. Comparisons with experiments and computations

Concerning the boundary-layer analysis in Section 3, our main prediction is (3.18) for the
normalized displacement 6, in 0 < x < 1, which implies for the displacement thickness 6D

= 2ax - 4aE3 (In E)x + E3 a1(- 1.74x - 2x In x), (5.1)

to order E3, where a, = 0.16, = {In(aRe)}- ' and the global Reynolds number Re =
u,: l,,ov-. Also, the predicted friction velocity uD is given by

UD = all2 (5.2)
Uo
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Fig. 3. Comparisons for the turbulent boundary-layer displacement: present work, (o, x); Cebeci et al.'s [17],
computations, · · .

to leading order. To start the comparisons we address Chevray and Kovasznay's [1] experiment
for which Re = 6.55 x 105, a value deduced from their Reynolds number uo,,ov- of
1.5 x 104 based on the "99% thickness" 6 = 5.50cm at the trailing edge x = 1, xD =

I = 240cm. So here = 0.103, and then (5.1) predicts the ratio 6*/ = 0.00299 at the
trailing edge x = 1, i.e., a displacement thickness 6 = 0.72cm there. This compares not
unfavourably with the value 0.84 cm deduced from Chevray and Kovasznay's findings and
with the value 0.81 cm read from Cebeci et al.'s [17] computations (their Fig. 9), bearing in
mind here and below the relative corrections omitted in the formulae such as (5.1), (5.2).
Extending the comparisons of 6* to other x values, we obtain the results shown in Fig. 3:
see also Fig. 4(b) below. The agreement between (5.1) and the experiments or full computations
is qualitatively very good throughout and quantitatively it seems to be fairly encouraging,
for example being to within about 11% at the trailing edge. Near the leading edge the
increased displacement slope ac - 31nx implied by (5.1) appears to mirror well the
increased slope observed in the full computations.

Again, the predicted value of urD/u, from (5.2) is 0.0412 for the above experiment and this
is reasonably close to the experimental values 0.046 and 0.037 quoted by Chevray and
Kovasnay using, respectively, a Clauser plot and a wall-slope method. Notice incidentally
that if we multiply our prediction for by 9/8, to line up the theory and the experiment
exactly at the trailing edge, then the agreement in terms of 6* is good for the entire boundary
layer (see Fig. 3); such a 9/8 factor is also consistent with the ratio 0.046/0.0412 of the
friction velocities mentioned above.

Similarly, the predicted momentum thickness 0 of the boundary layer can be shown to be
given by

I -- a l f u( - u)dy = - a3 o ud (5.3)

to our order of working. So for the experiment discussed above the value 0 = 0.65cm is
obtained, compared with the experimental result of 0.58 cm. The agreement again is not
unfavourable (and it is noteworthy that the ratio, 0.65/0.58, is again close to 9/8). The large
wall-shear stress predicted from (3.9)-(3.10) also seems consistent with the velocity profiles
at the trailing edge shown by Chevray and Kovasznay [1] and by Cebeci et al. [17].
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Comparisons with the more recent experiments of Andreopoulos and Bradshaw [2] show
a roughly similar degree of agreement. Their experiment has a plate length of 308 cm and a
higher Reynolds number, Re x 6.7 x 106, implying that = 0.083 and so our predicted
values of 6*, 0 at the trailing edge are found to be 0.57 cm, 0.52cm respectively, compared
with their results 0.81 cm, 0.64cm in turn (the latter reading is from their p. 643, although their
Table I suggests the different value 0 = 0.59 cm). Further, they measure a skin-friction coef-
ficient Cf of 0.0024, which is close to the theoretical value of 2a, 2 = 0.0022 derived from (3.10).

We turn now to comparisons of the wake properties. First, the predicted centre-line
velocity of the wake has the form

(UA)CL
UCL = ) = 1 + ql (x), (5.4)

U00

to the present order of working, from (4.6), with q, (x) given graphically in Fig. 2. The
comparison between (5.4) and the experimental and the computational results of [1], [17] is
presented in Fig. 4(a) and is seen to be very close indeed, over the entire length of wake for
which the experimental/computational results are available. A representative prediction, by
the way, is for x = 1.5 say, i.e., XD = 360 cm, where ql z - 2.08 from Fig. 2, so that, with
8 = 0.103 still, (5.4) gives uCL = 0.786 which is very near the experimental/computational
finding at 120 cm beyond the trailing edge.
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Fig. 4. Comparisons for the turbulent wake: (a) centre-line velocity, Re = 6.55 x 105 (x, present work) (0,
Chevray and Kovasznay's [1] experiments) ( - - -., Cebeci et al.'s [17] calculations); (b) displacement thickness,

Re = 6.55 x 105 ( - - - , computations [17]) (+ + +, computations by B.R. Williams, R.A.E., Farnborough,

see text) (x, O, present theory); (c) centre-line velocity, Re = 6.7 x 106 (x, present work) (O, Andreopoulos and

Bradshaw's [2] experiment).
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Fig. 4. Continued

Second here, the wake displacement thickness is predicted from Section 4 to be

6 = 4lal[82 - 4 3 (ln E) + 362 (x)] (5.5)

where 62(x) is defined graphically in Fig. 2. The agreement (see Fig. 4(b)) with the experimental
[1]/computational [17] results is very good qualitatively, with (5.5) giving a dip in displacement
similar to, although less than, that observed just beyond the trailing edge (see also Appendix
B) and reproducing the observed levelling out further downstream, and the agreement is also
reasonably good overall in quantitative terms. Recent (1987) computations based on the
R.A.E. lag-entrainment integral method, but coupled interactively with the outer flow, have
kindly been done at R.A.E. Farnborough by B.R. Williams and supplied to us by S.P. Fiddes
and these are also shown in Fig. 4(b), yielding a similar comparison.

The same level of agreement emerges from comparisons with Andreopoulos and Bradshaw's
[2] experimental wake properties at a higher Reynolds number. In particular, the agreement
concerning the wake centre-line velocity is very close, as shown in Fig. 4(c), while the trend
of the wake displacement thickness in their results is the same as the theoretical one
qualitatively and the quantitative agreement is again reasonable.

Further comparisons, of a more qualitative and structural nature, are included in the
comments below.

6. Further discussion

The present theoretical findings for the symmetric turbulent wake flow are of direct interest,
we believe, in three main respects. First, adopting the original Cebeci-Smith model throughout
the wake as well as in the boundary layer does work (Section 4), producing solutions that
satisfy the required symmetry conditions at the wake centre-line despite the presence of a
cusp in the velocity profile slightly away from the centre line. Second, the resulting wake

it

06 -
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solutions are physically sensible. Third, they show encouraging agreement with the exper-
imental and fully computational findings* (Section 5), the comparisons being very close as
regards the wake centre-line velocity and reasonably close in terms of the boundary-layer
and wake displacement. This is especially so in view of the relative corrections in the theory:
e.g., see Figs. 3, 4. An additional but smaller point here is that the computations of Cebeci et al.
[17] for the flow past the flat plate address the TSL equations of Section 2 in the boundary layer,
but in the wake their turbulence modelling is deliberately modified from the Cebeci-Smith
form. The current work tends to suggest, therefore, that the modification in the wake is a very
minor matter at the Reynolds numbers of interest and indeed it is almost certainly unnecessary.

The quantitative agreement on the boundary-layer and wake properties could be regarded
as an added bonus, of course, since our original aim as in most asymptotic analysis was to
gain some understanding of the structure of the high-Reynolds-number turbulent motion.
The structure found appears to be in line with the experimental observations overall. Thus,
concerning the wake in particular, the theory predicts an outer small-deficit layer of classical
thickness O(e) (layer I in Section 3) but with an inner turbulent-laminar layer (layer III) of
non-classical thickness O(Re-2/3e- 1/3), driven by the centre-line acceleration. This enhanced
inner thickness, which is much larger than the classical wall-layer thickness of the oncoming
turbulent boundary layer, seems to be present in Chevray and Kovasznay's [1] and Andreo-
poulos and Bradshaw's [2] experiments and in Cebeci et al.'s [3] calculations, for the velocity
profiles, and in particular in Fig. 1 and Table 1 of [2]. The outer thickness, where initially the
wake is little disturbed from its incident boundary-layer form, is also clearly noticable in the
experiments of [1, 2] (e.g., see the comment on page 647, lines 4-5, of [2]), as is the predicted
"cusp"-like behaviour of the wake velocity profile in the outer region: see [1]'s Fig. 1, [2]'s
Fig. 3 and [3]'s Fig. 7. The corresponding centre-line velocity is nominally predicted as a
small deficit from the freestream velocity for the majority of the wake, although the deficit
increases logarithmically towards the trailing edge and is no longer a small deficit when the
extra local zones around the trailing edge are entered: all these features agree also with the
general experimental structure (see e.g., the comparisons in Section 5 and [2]'s empirical
formula (1)). Associated with this, it is noteworthy that all the theoretical wake predictions
turn out in fact to be rather general, in spite of our decision to adopt the Cebeci-Smith model
throughout. The basic reason is that the "logarithmic layer" present in the incident boundary
layer at the trailing edge is absent in almost all the wake and is replaced in effect by a
"cuspidal layer" due to the necessary reduction in shear stresses near the centre line. Hence
the detailed inner part [1 - exp (...)] of the particular turbulence model taken in (2.6c)
exerts no significant influence at all in the wake, the wake's inner layer being much thicker
than O(Re-'u - l) as noted before; see also the end of the previous paragraph. So the only
significant assumption in the turbulence model used for the wake is that the stress force B
in (2.6b-d) is of the form y2 1 au/lay or (2.6d), predominantly, which is quite a general form.

The destruction of the initial logarithmic layer, incidentally, is achieved by a local lifting
of the layer away from the centre line, very close to the trailing edge (Appendix B), with the
layer finally petering out at the start of the near-wake (a) examined in Section 4.

* The present work agrees also with the recent Reynolds-averaged Navier-Stokes computations, based on the k-E
model, by V.C. Patel and H.C. Chen (Turbulent wake of a flat plate, A.I.A.A. Jnl. 25 (1987) 1078-1085), with
regard to the main properties such as the wake centre-line velocity, the displacement thickness, the velocity profiles
and so on, except in so far as the k-e model underpredicts the far-wake growth, as the last-named authors mention.
This paper was kindly pointed out to us by B.R. Williams and S.P. Fiddes.
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On technical matters, further terms in the asymptotic analysis presented in Sections 3, 4
can be generated in principle and may well improve the agreement with the experiments, at
least if the favourable effect of advancing from the one-term to the three-term prediction
shown in Figs. 3, 4 is continued. Again, the further regions existing nearer the trailing edge,
as discussed in Appendix B, are of interest not only theoretically but also physically. For one
thing, many of the Andreopoulos and Bradshaw's [21 experimental measurements are taken
quite close to the trailing edge, and, for another, it may be that the local trailing-edge analysis
points the way towards the understanding of the turbulent-separation problem: see also
below. A final technical point here concerns the solving of the boundary-layer and wake
equations in (3.3a)ff.. A helpful approximation to, and check on, the solution can be derived
from neglecting the outer part y > y, of the boundary layer or wake, based on the sup-
position that a5 in (2.6d) is sufficiently small ( 0.1). With that approximation the upper
constraint on the O(E) layer I becomes u = u, /a = 0 at the unknown upper boundary

= (x) and then only the inner part (2.6c) of the turbulence model plays a role. In the
boundary layer, for instance, the approximation leads to the values 2, 1 - In 2 (= 0.307)
and zero for 17, b,, c,, in turn, instead of the values listed in (3.16c), while the integral in
(3.17) becomes 5/3 as opposed to the value 1.68 noted before. Similar, fairly close, estimates
result from using this approximation in the far-wake as well, and it may prove useful in other
contexts.

Work by the authors is in progress to apply/extend the present theoretical approach to
more realistic airfoils and conditions. First, the flows past many thicker but not too thick
airfoils fall fairly readily into the present category of attached turbulent motions, we believe,
and application of the structural theory seems called for there. Second, the interactive-
boundary-layer treatments that have been applied to turbulent flows with the possibility of
separation occurring can be investigated along similar lines: see also Appendix B. Third, for
bluff airfoils, including the circular cylinder, the question of the structure of turbulent
separation needs further study. At present our work in progress tends to indicate that only
small-scale, not large-scale, separation can occur at high Reynolds numbers in such cases.
If so, this emphasizes the value of analyses of classical turbulent boundary layers, such as
in the current work, which among other things explains how a logarithmic layer can be lifted
away from a surface (see an earlier paragraph) and then peters out, a phenomenon commonly
associated also with separation. Fourth, compressibility effects need to be incorporated
in the theory in order to tackle the interaction and possible separation, be it local or
large-scale, occurring between an incident shock wave and a turbulent boundary layer.
A suggestion from this work relevant to all the above, we feel, is that the use of a particular
turbulence model, here the Cebeci-Smith one, can lead to physically realistic and accurate
predictions when a turbulent boundary layer encounters a significant change in boundary
conditions.
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Appendix A. Alternative derivations of the boundary-layer and wake properties

This is to record briefly two alternative approaches for deriving the turbulent boundary-layer
and wake features.

First, the normalization in (2.5) was applied earlier for convencience. Instead we could
simply deal with (u,, vD)/u,,, (xD, yD)/lo, i.e., replace the factor a, in (2.5) by unity so
that an a, factor is inserted in (2.6) and Re replaces R there, and then expand for large
Re, analogous to (3.2). The analysis proceeds much as in the main text and yields, for
example,

* 2
= e2a, x + sl In (,)(-4a, x) + a, {(- 1.74)x - 2x In (xa)) (Al)

in the boundary layer, with E, _ I/in Re. The result (Al) is the same to 0(e3 ) as the
prediction in Section 3 and numerically it gives values close to those presented in Section 5.
A similar correspondence holds in the wake analysis.

Second, suppose we refer instead to the corresponding Navier-Stokes equations with the
same turbulence model, thus seeking a more complete account than from the TSL equations
(2.6). At large Reynolds numbers the only difference encountered, to our order of working,
comes from the external induced pressure which is typically O(&e) due to the external
potential flow past the displacement surface of typical slope O(O2), from b1. Hence the
third-order problem quoted in (3.6) remains intact except for the outer boundary condition
which becomes

u2- -p 2(x) as j o (A2)

where C2 p2 is the induced pressure p, given by

P2(X) = ( fX- (A3)

The alteration has no effect on the predictions in the main text, to the orders shown, i.e. to
O(E) in ucL and O( 3 ) in 6/1,. For

62 = - fo (u2 + p 2 (x))dy (A4)

now, so that on integration across the flow the results (3.14) and (4.7) for 62(x) still hold.
Again, the solution here is closely related to the TSL one anyway, with

[U1, U2L, u2] (Navier-Stokes) = [u1, U2L, U2 + P2] (TSL) (A5)

in schematic form. Significant differences arise only at higher order as regards the main text,
therefore, although a more substantial effect can be seen in Appendix B below.
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Appendix B. Trailing-edge zones

Concerning the TSL version (2.6) first, the nonuniformities in the near wake of Section 4(a)
are smoothed out by a single localized trailing-edge zone of small length scale O(R-' -'):
see Fig. 5. Approximately, the near wake exhibits two thinning layers emerging as x -, 1 +,
one of width O[e(x - 1)] from (4.9) and the other of width O[R-21/3 - 113(x - 1)1/3] since, in
the governing equation (4.4a) for the inner sublayer III, q - (x - 1)-' as x -- 1 +. The
two layers appear to become coincident when x - 1 R-' 2, therefore; this estimate for
the new local zone is affected by logarithmic matching terms however and we find instead
the main length scale O(R-'e-1), subject to the matching described later in the Appendix.
An estimate based on velocity scales agrees with the above. With x = 1 + R-E-l and
y = R-le-1, then, the local zone has

(u, v) = E( , )(x, ) + * * (B1)

and so from (2.6) the governing equations and boundary conditions are

+ imp = 0, (B2)

+ = = a, l2
@-U + = {1 - exp (-a6y)}2 + - (B3)

= v = 0 at = 0, . < 0, (B4)

O/la = v = 0 at p = 0, x > 0, (B5)

u fi(y) as -xo, (B6)

u- In (y) as P -( o. (B7)

O(f) H

BOUNDARY

WAKE

- Width R"'e'

Fig. 5. The flow structure surrounding the trailing edge according to Appendix B. The 0(8) by 0(E) region V is
inactive in the TSL version.
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Here (B4), (B5) are constraints representing trailing-edge conditions, while (B6), (B7) join
with layer II upstream and with the majority of the boundary-layer-to-wake flow outside
where y is 0(1). There the solution is more regular, with

u = 1 + f(Y) + E2 In Eu2 (1, Y) + O(2) (B8)

for x - 1 = X of order 8, where the functions shown are those defined in Section 3, thus
yielding the logarithmic constraint in (B7). The local problem posed by (B2)-(B7) is non-
linear, consisting of virtually the whole system (2.6), and in general it requires a numerical
treatment, except that the solution for < 0 is identically = i(y) since there is no
upstream influence here. For small positive x a Goldstein-like 0(' / 3) sublayer is present, as
in laminar flow. For large positive x the match far downstream with Section 4(a) can be
verified. There the local flow of (B2)-(B7) splits into two parts. The outer part has y
increasing almost linearly with ; in fact 5 = x(ln x)- , and

u In - In (In ) + GI(.,) (B9)

where from substitution into (B2)-(B7) GI satisfies

1 - ,Ga = (2G 2)'. (B10)

This is exactly the equation (4.9b) and so yields the cuspidal behaviour as -*- 0+. The
necessary inner part therefore has Y smaller but still large, y = '/3 (ln 1)-'/3 2 and

u In g + · · · + - 3 (ln )' 3G 2(~2). (B11)

So G2 is governed by

1 = (2G2 2 )' + G', (B12)

which is the same as (4.4a), in its similarity form as x - 1 +, allowing the solution (4.4b-d).
Thus we have the beginnings of the "cusp" layer taking over from the upstream "logarithmic"
layer. The outer part where 5, is 0(1) matches with the near-wake structure of Section 4(a)
since the outer part's width -R-'E-'x(ln g)-' becomes of order (x - 1) downstream
when - R(x - 1). Likewise, the inner part merges into the thickened sublayer III of
Section 4.

A not dissimilar local interactive process occurs on the basis of the turbulent Navier-
Stokes equations also: see Appendix A. Thus the innermost zone is given by (B1) again but
with (B3) then being replaced by the full Navier-Stokes equations, subject to (B4)-(B7)
again and, in view of the ellipticity present here, to the matching requirements (B9)-(B12).
It can be verified that (B9)-(B12), which were derived above from the TSL equations, emerge
also from a downstream analysis of the Navier-Stokes equations, thus providing the join
with Section 4(a). The local solution is now no longer trivial in x < 0, but for x small and
positive an 0('1/3 ) sublayer is almost certainly involved again although it is more of the
Rott-Hakkinen kind than the Goldstein kind mentioned above. Lastly, the majority of the
boundary-layer-to-wake motion outside again has the form in (B8) but with the O(E2) term
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being controlled by equations different from the TSL version because the x- and y- depen-
dences are comparable and the induced pressure variation is O(e2 ), from Appendix A. The
above local structure seems to correct that in [15] and connects with other work [9, 16] on
trailing edge zones, and in addition it can be extended to different trailing-edge geometries
as described in our subsequent work [24].

Appendix C. Numerical solution of the wake problem

The predictor-corrector method used for the wake problem defined in Section 4 is as follows.
First, in view of the cuspidal behaviour implied in (4.2b) the transformation y = z2 is
applied, so that (3.3b) becomes

(1 8 ZOU2 < z,

(C1)Ox a (
aO f_, au,' 

L4z (Z a-z) z> 2 ,

with the result 6 = 1 inserted. Given the solution ua = il, say, at any station x, the
predictor stage for the next station (x + Ax) takes the form

lf = i uj + AxM(ij) (C2)

for 2 < j K - 1. Here the discretization in z has z = z = (j - )Az, with 1 < j < K,
and

8(+l i- u +l2 + Z (u+l - 2u+ l) for z < ,

M(uj) =

Ja, u+l_-u + (u,+ - 2u + uJ-I)} for z > Z:

I - t 2z]Az + z1(AZ)2 ' o

The centre-line and the outer values u, UIK are then determined by u(P) = 0 and

u(P) = Ax-,, (2 - l) (C4)

the latter being the finite-difference version of (4.2b) in effect. The corrector stage then takes

(c) = + a + M(ui)) (C5)

for 2 < j < K- 1, with u = O and

= (W 2 ) + ( AZ ) (C6)u(~ =(~'+f") A ~ -~')
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analogous to (C4). The above allows the wake calculation to be marched forward in small
steps Ax from the trailing edge at x = 1 and the integral for the displacement contribution
62 is evaluated from the trapezium rule at each step. The junction z = (x) in (C1), (C3) is
fixed by the test

(C7)

applying for z i.
A special treatment is needed at the very first step, however, because of the logarithmic

singularity in (4.5) at y = 0. A satisfactory procedure for handling this was found, after
some trials, to be simply to replace the In(y) term, implied in (4.5), by In(y + h) with h a
small positive constant, the rest of the solution at x = 0 being given by (3.16). Numerical
solutions were then generated in x > 1 for various small values of h (10-2 to 10-6) and the
required solution was derived by extrapolation of the results. In practice the value h = 10 -6

turned out to be sufficiently small for graphical accuracy, for instance.
This simple scheme is second-order accurate overall, as grid-size studies bear out, and it

proved stable for sufficiently small steps Ax. Typical values taken for Ax, Az, K were 10- 3,
0.05, 201 respectively and Fig. 6 summarizes the effects of varying the grid size, as well as
the parameter h. Extrapolation from these results was used to obtain the results shown
previously in Figs. 2, 4.

1-5 2 2-5 3

x-* 
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Samples of grids used
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O 1 0 001
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Fig. 6. Further details of the present work's computations for the wake flow: see Appendix C. The values of
[h, Ax, Az, K] used in the computations are as shown.
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